Exercise 3.4.8

Consider

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}
$$

subject to

$$
\partial u / \partial x(0, t)=0, \quad \partial u / \partial x(L, t)=0, \quad \text { and } \quad u(x, 0)=f(x)
$$

Solve in the following way. Look for the solution as a Fourier cosine series. Assume that u and $\partial u / \partial x$ are continuous and $\partial^{2} u / \partial x^{2}$ and $\partial u / \partial t$ are piecewise smooth. Justify all differentiations of infinite series.

Solution

Assuming that u is continuous on $0 \leq x \leq L$, it has a Fourier cosine series expansion.

$$
\begin{equation*}
u(x, t)=A_{0}(t)+\sum_{n=1}^{\infty} A_{n}(t) \cos \frac{n \pi x}{L} \tag{1}
\end{equation*}
$$

Because $\partial u / \partial t$ is piecewise smooth, the series can be differentiated with respect to t term by term.

$$
\frac{\partial u}{\partial t}=A_{0}^{\prime}(t)+\sum_{n=1}^{\infty} A_{n}^{\prime}(t) \cos \frac{n \pi x}{L}
$$

And because u is continuous, the cosine series can be differentiated with respect to x term by term.

$$
\frac{\partial u}{\partial x}=\sum_{n=1}^{\infty} A_{n}(t)\left(-\frac{n \pi}{L}\right) \sin \frac{n \pi x}{L}
$$

Since $u_{x}(0, t)=u_{x}(L, t)=0$, term-by-term differentiation of this sine series with respect to x is justified.

$$
\frac{\partial^{2} u}{\partial x^{2}}=\sum_{n=1}^{\infty} A_{n}(t)\left(-\frac{n^{2} \pi^{2}}{L^{2}}\right) \cos \frac{n \pi x}{L}
$$

Substitute these infinite series into the PDE.

$$
A_{0}^{\prime}(t)+\sum_{n=1}^{\infty} A_{n}^{\prime}(t) \cos \frac{n \pi x}{L}=k \sum_{n=1}^{\infty} A_{n}(t)\left(-\frac{n^{2} \pi^{2}}{L^{2}}\right) \cos \frac{n \pi x}{L}
$$

Bring all terms to the left side.

$$
A_{0}^{\prime}(t)+\sum_{n=1}^{\infty} A_{n}^{\prime}(t) \cos \frac{n \pi x}{L}+k \sum_{n=1}^{\infty} A_{n}(t)\left(\frac{n^{2} \pi^{2}}{L^{2}}\right) \cos \frac{n \pi x}{L}=0
$$

Combine the series.

$$
A_{0}^{\prime}(t)+\sum_{n=1}^{\infty}\left[A_{n}^{\prime}(t) \cos \frac{n \pi x}{L}+A_{n}(t)\left(\frac{k n^{2} \pi^{2}}{L^{2}}\right) \cos \frac{n \pi x}{L}\right]=0
$$

Factor the summand.

$$
A_{0}^{\prime}(t)+\sum_{n=1}^{\infty}\left[A_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} A_{n}(t)\right] \cos \frac{n \pi x}{L}=0
$$

Since the right side is zero, the coefficients must all be zero.

$$
\begin{aligned}
A_{0}^{\prime}(t) & =0 \\
A_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} A_{n}(t) & =0
\end{aligned}
$$

Solve each ODE for $A_{0}(t)$ and $A_{n}(t)$.

$$
\begin{aligned}
& A_{0}(t)=C_{1} \\
& A_{n}(t)=C_{2} \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right)
\end{aligned}
$$

In order to determine these constants of integration, initial conditions are needed. Use equation (1) along with $u(x, 0)=f(x)$ to obtain them.

$$
u(x, 0)=A_{0}(0)+\sum_{n=1}^{\infty} A_{n}(0) \cos \frac{n \pi x}{L}=f(x)
$$

This is the Fourier cosine series expansion of $f(x)$. As long as f is continuous, or at the very least piecewise smooth, then it's valid. The coefficients are known,

$$
\begin{aligned}
& A_{0}(0)=\frac{1}{L} \int_{0}^{L} f(x) d x=C_{1} \\
& A_{n}(0)=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x=C_{2}
\end{aligned}
$$

so C_{1} and C_{2} are as well. Therefore,

$$
\begin{aligned}
u(x, t) & =A_{0}(t)+\sum_{n=1}^{\infty} A_{n}(t) \cos \frac{n \pi x}{L} \\
& =\left[\frac{1}{L} \int_{0}^{L} f(x) d x\right]+\sum_{n=1}^{\infty}\left\{\left[\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x\right] \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right)\right\} \cos \frac{n \pi x}{L} .
\end{aligned}
$$

